Robust tracking of migrating cells using four-color level set segmentation

  • Authors:
  • Sumit K. Nath;Filiz Bunyak;Kannappan Palaniappan

  • Affiliations:
  • MCVL, Department of Computer Science, University of Missouri-Columbia, MO;MCVL, Department of Computer Science, University of Missouri-Columbia, MO;MCVL, Department of Computer Science, University of Missouri-Columbia, MO

  • Venue:
  • ACIVS'06 Proceedings of the 8th international conference on Advanced Concepts For Intelligent Vision Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Understanding behavior of migrating cells is becoming an emerging research area with many important applications. Segmentation and tracking constitute vital steps of this research. In this paper, we present an automated cell segmentation and tracking system designed to study migration of cells imaged with a phase contrast microscope. For segmentation the system uses active contour level set methods with a novel extension that efficiently prevents false-merge problem. Tracking is done by resolving frame to frame correspondences between multiple cells using a multi-distance, multi-hypothesis algorithm. Cells that move into the field-of-view, arise from cell division or disappear due to apoptosis are reliably segmented and tracked by the system. Robust tracking of cells, imaged with a phase contrast microscope is a challenging problem due to difficulties in segmenting dense clusters of cells. As cells being imaged have vague borders, close neighboring cells may appear to merge. These false-merges lead to incorrect trajectories being generated during the tracking process. Current level-set based approaches to solve the false-merge problem require a unique level set per object (the N-level set paradigm). The proposed approach uses evidence from previous frames and graph coloring principles and solves the same problem with only four level sets for any arbitrary number of similar objects, like cells.