Level Set Evolution without Re-Initialization: A New Variational Formulation

  • Authors:
  • Chunming Li;Chenyang Xu;Changfeng Gui;Martin D. Fox

  • Affiliations:
  • University of Connecticut;Siemens Corporate Research;University of Connecticut;University of Connecticut

  • Venue:
  • CVPR '05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we present a new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly re-initialization procedure. Our variational formulation consists of an internal energy term that penalizes the deviation of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image features, such as object boundaries. The resulting evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed variational level set formulation has three main advantages over the traditional level set formulations. First, a significantly larger time step can be used for numerically solving the evolution partial differential equation, and therefore speeds up the curve evolution. Second, the level set function can be initialized with general functions that are more efficient to construct and easier to use in practice than the widely used signed distance function. Third, the level set evolution in our formulation can be easily implemented by simple finite difference scheme and is computationally more efficient. The proposed algorithm has been applied to both simulated and real images with promising results.