Optimal motion generation of flexible macro-micro manipulator systems using estimation of distribution algorithm

  • Authors:
  • Yu Zhang;Shude Zhou;Tangwen Yang;Zengqi Sun

  • Affiliations:
  • Department of Computer Science and Technology, Tsinghua University, Beijing, China;Department of Computer Science and Technology, Tsinghua University, Beijing, China;Department of Computer Science and Technology, Tsinghua University, Beijing, China;Department of Computer Science and Technology, Tsinghua University, Beijing, China

  • Venue:
  • SEAL'06 Proceedings of the 6th international conference on Simulated Evolution And Learning
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, a new approach for motion generation and optimization of the flexible macro-micro manipulator system is proposed based on Estimation of Distribution Algorithm (EDA). The macro-micro manipulator system is a redundant system, of which inverse kinematics remains challenging, with no generic solution to date. Here, the manipulator system configurations, or the optimal joint motions, are generated using the EDA algorithm base on Gaussian probability model. Compared with simple genetic algorithms (SGA), this approach uses fewer parameters and the time for motion optimization is remarkably reduced. The proposed approach shows excellent performance on motion generation and optimization of a flexible macro-micro manipulator system, as demonstrated by the simulation results.