Initial experiences porting a bioinformatics application to a graphics processor

  • Authors:
  • Maria Charalambous;Pedro Trancoso;Alexandros Stamatakis

  • Affiliations:
  • Department of Computer Science, University of Cyprus, Nicosia, Cyprus;Department of Computer Science, University of Cyprus, Nicosia, Cyprus;Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece

  • Venue:
  • PCI'05 Proceedings of the 10th Panhellenic conference on Advances in Informatics
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bioinformatics applications are one of the most relevant and compute-demanding applications today. While normally these applications are executed on clusters or dedicated parallel systems, in this work we explore the use of an alternative architecture. We focus on exploiting the compute-intensive characteristics offered by the graphics processors (GPU) in order to accelerate a bioinformatics application. The GPU is a good match for these applications as it is an inexpensive, high-performance SIMD architecture. In our initial experiments we evaluate the use of a regular graphics card to improve the performance of RAxML, a bioinformatics program for phylogenetic tree inference. In this paper we focus on porting to the GPU the most time-consuming loop, which accounts for nearly 50% of the total execution time. The preliminary results show that the loop code achieves a speedup of 3x while the whole application with a single loop optimization, achieves a speedup of 1.2x.