Energy usage in biomimetic models for massively-deployed sensor networks

  • Authors:
  • Kennie H. Jones;Kenneth N. Lodding;Stephan Olariu;Larry Wilson;Chunsheng Xin

  • Affiliations:
  • NASA Langley Research Center, Hampton, VA;NASA Langley Research Center, Hampton, VA;Old Dominion University, Norfolk, VA;Old Dominion University, Norfolk, VA;Norfolk State University, Norfolk, VA

  • Venue:
  • ISPA'05 Proceedings of the 2005 international conference on Parallel and Distributed Processing and Applications
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Promises of ubiquitous control of the physical environment by sensor networks open avenues that will redefine the way we live and work. Due to the small size and low cost of sensors, visionaries promise smart systems enabled by deployment of huge numbers of sensors working in concert. At the moment, sensor network research is concentrating on developing techniques for performing simple tasks with minimal energy expense, assuming some form of centralized control. Centralized control does not scale to large networks and simple tasks in small-scale networks will not lead to the sophisticated applications predicted. Recently, the authors have proposed a new way of looking at sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Here we demonstrate that in such a model, fully distributed data aggregation can be performed efficiently, without synchronization, in a scalable fashion, where individual motes operate autonomously based on local information, cooperating with neighbors to make local decisions that are aggregated across the network achieving globally-meaningful effects.