An optimal data propagation algorithm for maximizing the lifespan of sensor networks

  • Authors:
  • Aubin Jarry;Pierre Leone;Olivier Powell;José Rolim

  • Affiliations:
  • Department of Informatics, University of Geneva, Switzerland;Department of Informatics, University of Geneva, Switzerland;Department of Informatics, University of Geneva, Switzerland;Department of Informatics, University of Geneva, Switzerland

  • Venue:
  • DCOSS'06 Proceedings of the Second IEEE international conference on Distributed Computing in Sensor Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of data propagation in wireless sensor networks and revisit the family of mixed strategy routing schemes. We show that maximizing the lifespan, balancing the energy among individual sensors and maximizing the message flow in the network are equivalent. We propose a distributed and adaptive data propagation algorithm for balancing the energy among sensors in the network. The mixed routing algorithm we propose allows each sensor node to either send a message to one of its immediate neighbors, or to send it directly to the base station, the decision being based on a potential function depending on its remaining energy. By considering a simple model of the network and using a linear programming description of the message flow, we prove the strong result that an energy-balanced mixed strategy beats every other possible routing strategy in terms of lifespan maximization. Moreover, we provide sufficient conditions for ensuring the dynamic stability of the algorithm. The algorithm is inspired by the gradient-based routing scheme but by allowing to send messages directly to the base station we improve considerably the lifespan of the network. As a matter of fact, we show experimentally that our algorithm is close to optimal and that it even beats the best centralized multi-hop routing strategy.