Linear genetic programming for multi-class object classification

  • Authors:
  • Christopher Fogelberg;Mengjie Zhang

  • Affiliations:
  • School of Mathematics, Statistics and Computer Sciences, Victoria University of Wellington, Wellington, New Zealand;School of Mathematics, Statistics and Computer Sciences, Victoria University of Wellington, Wellington, New Zealand

  • Venue:
  • AI'05 Proceedings of the 18th Australian Joint conference on Advances in Artificial Intelligence
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Multi-class object classification is an important field of research in computer vision. In this paper basic linear genetic programming is modified to be more suitable for multi-class classification and its performance is then compared to tree-based genetic programming. The directed acyclic graph nature of linear genetic programming is exploited. The existing fitness function is modified to more accurately approximate the true feature space. The results show that the new linear genetic programming approach outperforms the basic tree-based genetic programming approach on all the tasks investigated here and that the new fitness function leads to better and more consistent results. The genetic programs evolved by the new linear genetic programming system are also more comprehensible than those evolved by the tree-based system.