SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects

  • Authors:
  • Rimma V. Nehme;Elke A. Rundensteiner

  • Affiliations:
  • Department of Computer Science, Purdue University;Department of Computer Science, Worcester Polytechnic Institute

  • Venue:
  • EDBT'06 Proceedings of the 10th international conference on Advances in Database Technology
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose, SCUBA, a Scalable Cluster Based Algorithm for evaluating a large set of continuous queries over spatio-temporal data streams. The key idea of SCUBA is to group moving objects and queries based on common spatio-temporal properties at run-time into moving clusters to optimize query execution and thus facilitate scalability. SCUBA exploits shared cluster-based execution by abstracting the evaluation of a set of spatio-temporal queries as a spatial join first between moving clusters. This cluster-based filtering prunes true negatives. Then the execution proceeds with a fine-grained within-moving-cluster join process for all pairs of moving clusters identified as potentially joinable by a positive cluster-join match. A moving cluster can serve as an approximation of the location of its members. We show how moving clusters can serve as means for intelligent load shedding of spatio-temporal data to avoid performance degradation with minimal harm to result quality. Our experiments on real datasets demonstrate that SCUBA can achieve a substantial improvement when executing continuous queries on spatio-temporal data streams.