An improved representation of junctions through asymmetric tensor diffusion

  • Authors:
  • Shawn Arseneau;Jeremy R. Cooperstock

  • Affiliations:
  • Centre for Intelligent Machines, McGill University, Montreal, Canada;Centre for Intelligent Machines, McGill University, Montreal, Canada

  • Venue:
  • ISVC'06 Proceedings of the Second international conference on Advances in Visual Computing - Volume Part I
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Junctions form critical features in motion segmentation, image enhancement, and object classification to name but a few application domains. Traditional approaches to identifying junctions include convolutional methods, which involve considerable tuning to handle non-trivial inputs and diffusion techniques that address only symmetric structure. A new approach is proposed that requires minimal tuning and can distinguish between the basic, but critically different, ‘X’ and ‘T’ junctions. This involves a multi-directional representation of gradient structure and employs asymmetric tensor diffusion to emphasize such junctions. The approach combines the desirable properties of asymmetry from convolutional methods with the robustness of local support from diffusion.