Low-overhead dynamic multi-channel MAC for wireless sensor networks

  • Authors:
  • Joris Borms;Kris Steenhaut;Bart Lemmens

  • Affiliations:
  • Dept. of Electronics and Informatics ETRO, Vrije Universiteit Brussel;Dept. of Electronics and Informatics ETRO, Vrije Universiteit Brussel;Dept. of Electronics and Informatics ETRO, Vrije Universiteit Brussel

  • Venue:
  • EWSN'10 Proceedings of the 7th European conference on Wireless Sensor Networks
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Most of the existing popular MAC protocols for Wireless Sensor Networks (WSN) only use a single channel for relaying data. Most popular platforms however are equipped with a radio chip capable of switching its channel, and are therefor not restricted to a single-channel operation. Operating on multiple channels can increase bandwidth and can provide robustness against external interference. We argue that this feature is not only useful for dense, high-throughput WSNs but also for sparser networks with low average data rates but with occasional traffic bursts. We present MuChMAC, a low-overhead Multi-Channel MAC protocol which uses a combination of TDMA and asynchronous MAC techniques to exploit multi-channel operation without the need for coordination or tight synchronization between nodes. We describe an interface to scale MuChMAC’s duty cycle to adapt to varying traffic conditions or energy constraints. We demonstrate MuChMAC’s usefulness on a testbed consisting out Sentilla JCreate motes running it as the MAC layer for Contiki-based applications.