Prize-collecting steiner networks via iterative rounding

  • Authors:
  • MohammadTaghi Hajiaghayi;Arefeh A. Nasri

  • Affiliations:
  • ATST Labs– Research, Florham Park, NJ;Rutgers University, New Brunswick, NJ

  • Venue:
  • LATIN'10 Proceedings of the 9th Latin American conference on Theoretical Informatics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we design an iterative rounding approach for the classic prize-collecting Steiner forest problem and more generally the prize-collecting survivable Steiner network design problem. We show as an structural result that in each iteration of our algorithm there is an LP variable in a basic feasible solution which is at least one-third-integral resulting a 3-approximation algorithm for this problem. In addition, we show this factor 3 in our structural result is indeed tight for prize-collecting Steiner forest and thus prize-collecting survivable Steiner network design. This especially answers negatively the previous belief that one might be able to obtain an approximation factor better than 3 for these problems using a natural iterative rounding approach. Our structural result is extending the celebrated iterative rounding approach of Jain [13] by using several new ideas some from more complicated linear algebra. The approach of this paper can be also applied to get a constant factor (bicriteria-)approximation algorithm for degree constrained prize-collecting network design problems. We emphasize that though in theory we can prove existence of only an LP variable of at least one-third-integral, in practice very often in each iteration there exists a variable of integral or almost integral which results in a much better approximation factor than provable factor 3 in this paper (see patent application [11]). This is indeed the advantage of our algorithm in this paper over previous approximation algorithms for prize-collecting Steiner forest with the same or slightly better provable approximation factors.