Prize-Collecting steiner network problems

  • Authors:
  • MohammadTaghi Hajiaghayi;Rohit Khandekar;Guy Kortsarz;Zeev Nutov

  • Affiliations:
  • AT&T Research Lab Research;IBM T.J.Watson Research Center;Rutgers University, Camden;The Open University of Israel

  • Venue:
  • IPCO'10 Proceedings of the 14th international conference on Integer Programming and Combinatorial Optimization
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the Steiner Network problem we are given a graph G with edge-costs and connectivity requirements ruv between node pairs u,v. The goal is to find a minimum-cost subgraph H of G that contains ruv edge-disjoint paths for all u,v∈V. In Prize-Collecting Steiner Network problems we do not need to satisfy all requirements, but are given a penalty function for violating the connectivity requirements, and the goal is to find a subgraph H that minimizes the cost plus the penalty. The case when ruv∈{0,1} is the classic Prize-Collecting Steiner Forest problem. In this paper we present a novel linear programming relaxation for the Prize-Collecting Steiner Network problem, and by rounding it, obtain the first constant-factor approximation algorithm for submodular and monotone non-decreasing penalty functions. In particular, our setting includes all-or-nothing penalty functions, which charge the penalty even if the connectivity requirement is slightly violated; this resolves an open question posed in [SSW07]. We further generalize our results for element-connectivity and node-connectivity.