Derandomized constructions of k-wise (almost) independent permutations

  • Authors:
  • Eyal Kaplan;Moni Naor;Omer Reingold

  • Affiliations:
  • Tel-Aviv University;Department of Computer Science and Applied Math, Weizmann Institute of Science;Department of Computer Science and Applied Math, Weizmann Institute of Science

  • Venue:
  • APPROX'05/RANDOM'05 Proceedings of the 8th international workshop on Approximation, Randomization and Combinatorial Optimization Problems, and Proceedings of the 9th international conference on Randamization and Computation: algorithms and techniques
  • Year:
  • 2005

Quantified Score

Hi-index 0.03

Visualization

Abstract

Constructions of k-wise almost independent permutations have been receiving a growing amount of attention in recent years. However, unlike the case of k-wise independent functions, the size of previously constructed families of such permutations is far from optimal. This paper gives a new method for reducing the size of families given by previous constructions. Our method relies on pseudorandom generators for space-bounded computations. In fact, all we need is a generator, that produces “pseudorandom walks” on undirected graphs with a consistent labelling. One such generator is implied by Reingold's log-space algorithm for undirected connectivity [21,22]. We obtain families of k-wise almost independent permutations, with an optimal description length, up to a constant factor. More precisely, if the distance from uniform for any k tuple should be at most δ, then the size of the description of a permutation in the family is $O(kn +\log \frac 1 {\delta})$.