Continuous local search

  • Authors:
  • Constantinos Daskalakis;Christos Papadimitriou

  • Affiliations:
  • EECS and CSAIL, MIT;UC Berkeley

  • Venue:
  • Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce CLS, for continuous local search, a class of polynomial-time checkable total functions that lies at the intersection of PPAD and PLS, and captures a particularly benign kind of local optimization in which the domain is continuous, as opposed to combinatorial, and the functions involved are continuous. We show that this class contains several well known intriguing problems which were heretofore known to lie in the intersection of PLS and PPAD but were otherwise unclassifiable: Finding fixpoints of contraction maps, the linear complementarity problem for P matrices, finding a stationary point of a low-degree polynomial objective, the simple stochastic games of Shapley and Condon, and finding a mixed Nash equilibrium in congestion, implicit congestion, and network coordination games. The last four problems belong to CCLS, for convex CLS, another subclass of PPAD ∩ PLS seeking the componentwise local minimum of a componentwise convex function. It is open whether any or all of these problems are complete for the corresponding classes.