Complexity bounds for regular games

  • Authors:
  • Paul Hunter;Anuj Dawar

  • Affiliations:
  • University of Cambridge Computer Laboratory, Cambridge, UK;University of Cambridge Computer Laboratory, Cambridge, UK

  • Venue:
  • MFCS'05 Proceedings of the 30th international conference on Mathematical Foundations of Computer Science
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the complexity of infinite games played on finite graphs. We establish a framework in which the expressiveness and succinctness of different types of winning conditions can be compared. We show that the problem of deciding the winner in Muller games is PSPACE-complete. This is then used to establish PSPACE-completeness for Emerson-Lei games and for games described by Zielonka DAGs. Adaptations of the proof show PSPACE-completeness for the emptiness problem for Muller automata as well as the model-checking problem for such automata on regular trees. We also show co-NP-completeness for two classes of union-closed games: games specified by a basis and superset Muller games.