Distributed optimal cooperative tracking control of multiple autonomous robots

  • Authors:
  • Jianan Wang;Ming Xin

  • Affiliations:
  • -;-

  • Venue:
  • Robotics and Autonomous Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a unified distributed optimal control approach for multiple autonomous robots' cooperative tracking as well as obstacle avoidance. An inverse optimal control strategy is employed to design cost functions such that three cooperative control objectives including cooperative tracking, obstacle avoidance, and control effort minimization, can be addressed in one optimal control design process. The optimal control law of each robot can be obtained in a closed-form and only depends on the local information from the neighbors, rather than all robots' information. Three simulation scenarios, rendezvous to a pre-specified point, tracking a straight line reference with a constant velocity, and tracking a circular trajectory, demonstrate the desired cooperative tracking behaviors as well as obstacle avoidance capability.