Improved approximation bounds for planar point pattern matching

  • Authors:
  • Minkyoung Cho;David M. Mount

  • Affiliations:
  • Department of Computer Science, Institute for Advanced Computer Studies, University of Maryland, College Park, MD;Department of Computer Science, Institute for Advanced Computer Studies, University of Maryland, College Park, MD

  • Venue:
  • WADS'05 Proceedings of the 9th international conference on Algorithms and Data Structures
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the well known problem of matching two planar point sets under rigid transformations so as to minimize the directed Hausdorff distance. This is a well studied problem in computational geometry. Goodrich, Mitchell, and Orletsky [GMO94] presented a very simple approximation algorithm for this problem, which computes transformations based on aligning pairs of points. They showed that their algorithm achieves an approximation ratio of 4. We consider a minor modification to their algorithm, which is based on aligning midpoints rather than endpoints. We show that this algorithm achieves an approximation ratio not greater than 3.13. Our analysis is sensitive to the ratio between the diameter of the pattern set and the Hausdorff distance, and we show that the approximation ratio approaches 3 in the limit. Finally, we provide lower bounds that show that our approximation bounds are nearly tight.