Property testing and the branching program size of boolean functions

  • Authors:
  • Beate Bollig

  • Affiliations:
  • FB 15, Johann-Wolfgang Goethe-Univ. Frankfurt am Main, Frankfurt, Germany

  • Venue:
  • FCT'05 Proceedings of the 15th international conference on Fundamentals of Computation Theory
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Combinatorial property testing, initiated formally by Goldreich, Goldwasser, and Ron (1998) and inspired by Rubinfeld and Sudan (1996), deals with the relaxation of decision problems. Given a property P the aim is to decide whether a given input satisfies the property P or is far from having the property. For a family of boolean functions f = (fn) the associated property is the set of 1-inputs of f. Newman (2002) has proved that properties characterized by oblivious read-once branching programs of constant width are testable, i.e., a number of queries that is independent of the input size is sufficient. We show that Newman's result cannot be generalized to oblivious read-once branching programs of almost linear size. Moreover, we present a property identified by restricted oblivious read-twice branching programs of constant width and by CNFs with a linear number of clauses, where almost all clauses have constant length, but for which the query complexity is Ω (n1/4).