Compact genetic codes as a search strategy of evolutionary processes

  • Authors:
  • Marc Toussaint

  • Affiliations:
  • Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, Scotland, UK

  • Venue:
  • FOGA'05 Proceedings of the 8th international conference on Foundations of Genetic Algorithms
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The choice of genetic representation crucially determines the capability of evolutionary processes to find complex solutions in which many variables interact. The question is how good genetic representations can be found and how they can be adapted online to account for what can be learned about the structure of the problem from previous samples. We address these questions in a scenario that we term indirect Estimation-of-Distribution: We consider a decorrelated search distribution (mutational variability) on a variable length genotype space. A one-to-one encoding onto the phenotype space then needs to induce an adapted phenotypic variability incorporating the dependencies between phenotypic variables that have been observed successful previously. Formalizing this in the framework of Estimation-of-Distribution Algorithms, an adapted phenotypic variability can be characterized as minimizing the Kullback-Leibler divergence to a population of previously selected individuals (parents). Our core result is a relation between the Kullback-Leibler divergence and the description length of the encoding in the specific scenario, stating that compact codes provide a way to minimize this divergence. A proposed class of Compression Evolutionary Algorithms and preliminary experiments with an L-system compression scheme illustrate the approach. We also discuss the implications for the self-adaptive evolution of genetic representations on the basis of neutrality (σ-evolution) towards compact codes.