Demonstrating the evolution of complex genetic representations: an evolution of artificial plants

  • Authors:
  • Marc Toussaint

  • Affiliations:
  • Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany

  • Venue:
  • GECCO'03 Proceedings of the 2003 international conference on Genetic and evolutionary computation: PartI
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

A common idea is that complex evolutionary adaptation is enabled by complex genetic representations of phenotypic traits. This paper demonstrates how, according to a recently developed theory, genetic representations can self-adapt in favor of evolvability, i.e., the chance of adaptive mutations. The key for the adaptability of genetic representations is neutrality inherent in non-trivial genotype-phenotype mappings and neutral mutations that allow for transitions between genetic representations of the same phenotype. We model an evolution of artificial plants, encoded by grammar-like genotypes, to demonstrate this theory.