A variational approach for object contour tracking

  • Authors:
  • Nicolas Papadakis;Etienne Mémin;Frédéric Cao

  • Affiliations:
  • IRISA/INRIA, Rennes, France;IRISA/INRIA, Rennes, France;IRISA/INRIA, Rennes, France

  • Venue:
  • VLSM'05 Proceedings of the Third international conference on Variational, Geometric, and Level Set Methods in Computer Vision
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we describe a new framework for the tracking of closed curves described through implicit surface modeling. The approach proposed here enables a continuous tracking along an image sequence of deformable object contours. Such an approach is formalized through the minimization of a global spatio-temporal continuous cost functional stemming from a Bayesian Maximum a posteriori estimation of a Gaussian probability distribution. The resulting minimization sequence consists in a forward integration of an evolution law followed by a backward integration of an adjoint evolution model. This latter pde include also a term related to the discrepancy between the curve evolution law and a noisy observation of the curve. The efficiency of the approach is demonstrated on image sequences showing deformable objects of different natures.