3D reconstruction of human motion and skeleton from uncalibrated monocular video

  • Authors:
  • Yen-Lin Chen;Jinxiang Chai

  • Affiliations:
  • Department of Computer Science and Engineering, Texas A&M University, College Station, Texas;Department of Computer Science and Engineering, Texas A&M University, College Station, Texas

  • Venue:
  • ACCV'09 Proceedings of the 9th Asian conference on Computer Vision - Volume Part I
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper introduces a new model-based approach for simultaneously reconstructing 3D human motion and full-body skeletal size from a small set of 2D image features tracked from uncalibrated monocular video sequences. The key idea of our approach is to construct a generative human motion model from a large set of preprocessed human motion examples to constrain the solution space of monocular human motion tracking. In addition, we learn a generative skeleton model from prerecorded human skeleton data to reduce ambiguity of the human skeleton reconstruction. We formulate the reconstruction process in a nonlinear optimization framework by continuously deforming the generative models to best match a small set of 2D image features tracked from a monocular video sequence. We evaluate the performance of our system by testing the algorithm on a variety of uncalibrated monocular video sequences.