Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more

  • Authors:
  • Xavier Boyen

  • Affiliations:
  • Institut Montefiore, Universitas Leodiensis, Liège, Belgium

  • Venue:
  • PKC'10 Proceedings of the 13th international conference on Practice and Theory in Public Key Cryptography
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a framework for adaptive security from hard random lattices in the standard model. Our approach borrows from the recent Agrawal-Boneh-Boyen families of lattices, which can admit reliable and punctured trapdoors, respectively used in reality and in simulation. We extend this idea to make the simulation trapdoors cancel not for a specific forgery but on a non-negligible subset of the possible challenges. Conceptually, we build a compactly representable, large family of input-dependent “mixture” lattices, set up with trapdoors that “vanish” for a secret subset which we hope the forger will target. Technically, we tweak the lattice structure to achieve “naturally nice” distributions for arbitrary choices of subset size. The framework is very general. Here we obtain fully secure signatures, and also IBE, that are compact, simple, and elegant.