Asymptotically efficient lattice-based digital signatures

  • Authors:
  • Vadim Lyubashevsky;Daniele Micciancio

  • Affiliations:
  • University of California, San Diego, La Jolla, CA;University of California, San Diego, La Jolla, CA

  • Venue:
  • TCC'08 Proceedings of the 5th conference on Theory of cryptography
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We give a direct construction of digital signatures based on the complexity of approximating the shortest vector in ideal (e.g., cyclic) lattices. The construction is provably secure based on the worst-case hardness of approximating the shortest vector in such lattices within a polynomial factor, and it is also asymptotically efficient: the time complexity of the signing and verification algorithms, as well as key and signature size is almost linear (up to poly-logarithmic factors) in the dimension n of the underlying lattice. Since no sub-exponential (in n) time algorithm is known to solve lattice problems in the worst case, even when restricted to cyclic lattices, our construction gives a digital signature scheme with an essentially optimal performance/security trade-off.