Generalized compact knapsacks are collision resistant

  • Authors:
  • Vadim Lyubashevsky;Daniele Micciancio

  • Affiliations:
  • University of California, San Diego, CA;University of California, San Diego, CA

  • Venue:
  • ICALP'06 Proceedings of the 33rd international conference on Automata, Languages and Programming - Volume Part II
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In (Micciancio, FOCS 2002), it was proved that solving the generalized compact knapsack problem on the average is as hard as solving certain worst-case problems for cyclic lattices. This result immediately yielded very efficient one-way functions whose security was based on worst-case hardness assumptions. In this work, we show that, while the function proposed by Micciancio is not collision resistant, it can be easily modified to achieve collision resistance under essentially the same complexity assumptions on cyclic lattices. Our modified function is obtained as a special case of a more general result, which yields efficient collision-resistant hash functions based on the worst-case hardness of various new problems. These include new problems from algebraic number theory as well as classic lattice problems (e.g., the shortest vector problem) over ideal lattices, a class of lattices that includes cyclic lattices as a special case