Synthesizing shortest linear straight-line programs over GF(2) using SAT

  • Authors:
  • Carsten Fuhs;Peter Schneider-Kamp

  • Affiliations:
  • LuFG Informatik 2, RWTH Aachen University, Germany;IMADA, University of Southern Denmark, Denmark

  • Venue:
  • SAT'10 Proceedings of the 13th international conference on Theory and Applications of Satisfiability Testing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Non-trivial linear straight-line programs over the Galois field of two elements occur frequently in applications such as encryption or high-performance computing. Finding the shortest linear straight-line program for a given set of linear forms is known to be MaxSNP-complete, i.e., there is no ε-approximation for the problem unless P=NP. This paper presents a non-approximative approach for finding the shortest linear straight-line program. In other words, we show how to search for a circuit of XOR gates with the minimal number of such gates. The approach is based on a reduction of the associated decision problem (“Is there a program of length k?”) to satisfiability of propositional logic. Using modern SAT solvers, optimal solutions to interesting problem instances can be obtained.