Ensuring relaxed atomicity for flexible transactions in multidatabase systems

  • Authors:
  • Aidong Zhang;Marian Nodine;Bharat Bhargava;Omran Bukhres

  • Affiliations:
  • Department of Computer Science, Purdue University, West Lafayette, IN;Department of Computer Science, Brown University, Providence, RI;Department of Computer Science, Purdue University, West Lafayette, IN;Department of Computer Science, Purdue University, West Lafayette, IN

  • Venue:
  • SIGMOD '94 Proceedings of the 1994 ACM SIGMOD international conference on Management of data
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

Global transaction management requires cooperation from local sites to ensure the consistent and reliable execution of global transactions in a distributed database system. In a heterogeneous distributed database (or multidatabase) environment, various local sites make conflicting assertions of autonomy over the execution of global transactions. A flexible transaction model for the specification of global transactions makes it possible to deal robustly with these conflicting requirements. This paper presents an approach that preserves the semi-atomicity (a weaker form of atomicity) of flexible transactions, allowing local sites to autonomously maintain serializability and recoverability. We offer a fundamental characterization of the flexible transaction model and precisely define the semi-atomicity. We investigate the commit dependencies among the subtransactions of a flexible transaction. These dependencies are used to control the commitment order of the subtransactions. We next identify those restrictions that must be placed upon a flexible transaction to ensure the maintenance of its semi-atomicity. As atomicity is a restrictive criterion, semi-atomicity enhances the class of executable global transactions.