3D statistical shape modeling of long bones

  • Authors:
  • Yuhui Yang;Anthony Bull;Daniel Rueckert;Adam Hill

  • Affiliations:
  • Department of Bioengineering, Imperial College London, United Kingdom;Department of Bioengineering, Imperial College London, United Kingdom;Department of Computing, Imperial College London, United Kingdom;Department of Bioengineering, Imperial College London, United Kingdom

  • Venue:
  • WBIR'06 Proceedings of the Third international conference on Biomedical Image Registration
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The aims of this paper are to devise robust methods for the description of the variability in shapes of long bones using 3D statistical shape models (SSMs), and to test these on a dataset of humeri that demonstrate significant variability in shape. 30 primate humeri were CT scanned and manually segmented. SSMs were constructed from a training set of landmarks. The landmarks of the 3D shapes are extracted automatically using marching cubes and point correspondences are automatically obtained via a volumetric non-rigid registration technique using multiresolution B-Spline deformations. The surface registration resulted in no discernible differences between bone shapes, demonstrating the high accuracy of the registration method. An analysis of variations is applied on the shapes based on the model we built. The first mode of variation accounted for 42% of the variation in bone shape. This single component discriminated directly between great apes (including humans) and monkeys.