Predicting missing markers in real-time optical motion capture

  • Authors:
  • Tommaso Piazza;Johan Lundström;Andreas Kunz;Morten Fjeld

  • Affiliations:
  • t2i Lab, CSE Chalmers University of Technology, Göteborg, Sweden;t2i Lab, CSE Chalmers University of Technology, Göteborg, Sweden;ICVR, Swiss Federal Institute of Technology, Zurich, Switzerland;t2i Lab, CSE Chalmers University of Technology, Göteborg, Sweden

  • Venue:
  • 3DPH'09 Proceedings of the 2009 international conference on Modelling the Physiological Human
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

A common problem in optical motion capture of human-body movement is the so-called missing marker problem. The occlusion of markers can lead to significant problems in tracking accuracy unless a continuous flow of data is guaranteed by interpolation or extrapolation algorithms. Since interpolation algorithms require data sampled before and after an occlusion, they cannot be used for real-time applications. Extrapolation algorithms only require data sampled before an occlusion. Other algorithms require statistical data and are designed for post-processing. In order to bridge sampling gaps caused by occluded markers and hence to improve 3D real-time motion capture, we suggest a computationally cost-efficient extrapolation algorithm partly combined with a so-called constraint matrix. The realization of this prediction algorithm does not require statistical data nor does it rely on an underlying kinematic human model with pre-defined marker distances. Under the assumption that human motion can be linear, circular, or a linear combination of both, a prediction method is realized. The paper presents measurements of a circular movement wherein a marker is briefly lost. The suggested extrapolation method behaves well for a reasonable number of frames, not exceeding around two seconds of time.