A region-oriented hardware implementation for membrane computing applications

  • Authors:
  • Van Nguyen;David Kearney;Gianpaolo Gioiosa

  • Affiliations:
  • School of Computer and Information Science, University of South Australia;School of Computer and Information Science, University of South Australia;School of Computer and Information Science, University of South Australia

  • Venue:
  • WMC'09 Proceedings of the 10th international conference on Membrane Computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We have recently developed a prototype hardware implementation of membrane computing based on reconfigurable computing technology called Reconfig-P. The existing hardware design treats reaction rules as the primary computational entities and represents regions only implicitly. In this paper, we describe and evaluate an alternative hardware design that more directly reflects the intuitive conceptual understanding of a P system and therefore promotes the extensibility of Reconfig-P. A key feature of the design is the fact that regions, rather than reaction rules, are the primary computational entities. More specifically, in the design, regions are represented as loosely coupled processing units which communicate objects by message passing. Experimental results show that for many P systems the region-oriented and rule-oriented designs exhibit similar performance and hardware resource consumption.