Solid mesh registration for radiotherapy treatment planning

  • Authors:
  • Karsten Østergaard Noe;Thomas Sangild Sørensen

  • Affiliations:
  • Department of Computer Science, Aarhus University, Denmark;Department of Computer Science, Aarhus University, Denmark

  • Venue:
  • ISBMS'10 Proceedings of the 5th international conference on Biomedical Simulation
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved using a non-linear elastic finite element model. A key feature of the method is that the user does not need to specify boundary conditions (surface point correspondences) prior to the finite element analysis. Instead the boundary matches are found as an integrated part of the analysis. The method is evaluated on phantom data and prostate data obtained in vivo based on fiducial marker accuracy and inverse consistency of transformations. The parallel nature of the method allows an efficient implementation on a GPU and as a result the method is very fast. All validation registrations take less than 30 seconds to complete. The proposed method has many potential uses in image guided radiotherapy (IGRT) which relies on registration to account for organ deformation between treatment sessions.