Solving support vector machines beyond dual programming

  • Authors:
  • Xun Liang

  • Affiliations:
  • School of Information, Renmin University of China, Beijing, China

  • Venue:
  • ICONIP'11 Proceedings of the 18th international conference on Neural Information Processing - Volume Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Support vector machines (SV machines, SVMs) are solved conventionally by converting the convex primal problem into a dual problem with the aid of a Lagrangian function, during whose process the non-negative Lagrangian multipliers are mandatory. Consequently, in the typical C-SVMs, the optimal solutions are given by stationary saddle points. Nonetheless, there may still exist solutions beyond the stationary saddle points. This paper explores these new points violating Karush-Kuhn-Tucker (KKT) condition.