Probabilistic user modeling in the presence of drifting concepts

  • Authors:
  • Vikas Bhardwaj;Ramaswamy Devarajan

  • Affiliations:
  • Department of Computer Science, Columbia University, New York;Department of Computer Science, Columbia University, New York

  • Venue:
  • PAKDD'10 Proceedings of the 14th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining - Volume Part I
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We investigate supervised prediction tasks which involve multiple agents over time, in the presence of drifting concepts. The motivation behind choosing the topic is that such tasks arise in many domains which require predicting human actions. An example of such a task is recommender systems, where it is required to predict the future ratings, given features describing items and context along with the previous ratings assigned by the users. In such a system, the relationships among the features and the class values can vary over time. A common challenge to learners in such a setting is that this variation can occur both across time for a given agent, and also across different agents, (i.e. each agent behaves differently). Furthermore, the factors causing this variation are often hidden. We explore probabilistic models suitable for this setting, along with efficient algorithms to learn the model structure. Our experiments use the Netflix Prize dataset, a real world dataset which shows the presence of time variant concepts. The results show that the approaches we describe are more accurate than alternative approaches, especially when there is a large variation among agents. All the data and source code would be made open-source under the GNU GPL.