Sinogram denoising of cryo-electron microscopy images

  • Authors:
  • Taneli Mielikäinen;Janne Ravantti

  • Affiliations:
  • HIIT Basic Research Unit, Department of Computer Science, University of Helsinki, Finland;Institute of Biotechnology and, Faculty of Biosciences, University of Helsinki, Finland

  • Venue:
  • ICCSA'05 Proceedings of the 2005 international conference on Computational Science and Its Applications - Volume Part IV
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cryo-electron microscopy has recently been recognized as a useful alternative to obtain three-dimensional density maps of macromolecular complexes, especially when crystallography and NMR techniques fail. The three-dimensional model is constructed from large collections of cryo-electron microscopy images of identical particles in random (and unknown) orientations. The major problem with cryo-electron microscopy is that the images are very noisy as the signal-to-noise ratio can be below one. Thus, standard filtering techniques are not directly applicable. Traditionally, the problem of immense noise in the cryo-electron microscopy images has been tackled by clustering the images and computing the class averages. However, then one has to assume that the particles have only few preferred orientations. In this paper we propose a sound method for denoising cryo-electron microscopy images using their Radon transforms. The method assumes only that the images are from identical particles but nothing is assumed about the orientations of the particles. Our preliminary experiments show that the method can be used to improve the image quality even when the signal-to-noise ratio is very low.