Program size and temperature in self-assembly

  • Authors:
  • Ho-Lin Chen;David Doty;Shinnosuke Seki

  • Affiliations:
  • Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA;Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA;Department of System Sciences for Drug Discovery, Kyoto University, Kyoto, Japan

  • Venue:
  • ISAAC'11 Proceedings of the 22nd international conference on Algorithms and Computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Winfree's abstract Tile Assembly Model (aTAM) is a model of molecular self-assembly of DNA complexes known as tiles, which float freely in solution and attach one at a time to a growing "seed" assembly based on specific binding sites on their four sides. We show that there is a polynomial-time algorithm that, given an n ×n square, finds the minimal tile system (i.e., the system with the smallest number of distinct tile types) that uniquely self-assembles the square, answering an open question of Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund (Combinatorial Optimization Problems in Self-Assembly, STOC 2002). Our investigation leading to this algorithm reveals other positive and negative results about the relationship between the size of a tile system and its "temperature" (the binding strength threshold required for a tile to attach)