A robust adaptive beamformer for microphone arrays with a blockingmatrix using constrained adaptive filters

  • Authors:
  • O. Hoshuyama;A. Sugiyama;A. Hirano

  • Affiliations:
  • C&C Media Res. Labs., NEC Corp., Kawasaki;-;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 1999

Quantified Score

Hi-index 35.69

Visualization

Abstract

This paper proposes a new robust adaptive beamformer applicable to microphone arrays. The proposed beamformer is a generalized sidelobe canceller (GSC) with a new adaptive blocking matrix using coefficient-constrained adaptive filters (CCAFs) and a multiple-input canceller with norm-constrained adaptive filters (NCAFs). The CCAFs minimize leakage of the target-signal into the interference path of the GSC. Each coefficient of the CCAFs is constrained to avoid mistracking. The input signal to all the CCAFs is the output of a fixed beamformer. In the multiple-input canceller, the NCAFs prevent undesirable target-signal cancellation when the target-signal minimization at the blocking matrix is incomplete. The proposed beamformer is shown to be robust to target-direction errors as large as 200 with almost no degradation in interference-reduction performance, and it can be implemented with several microphones. The maximum allowable target-direction error can be specified by the user. Simulated anechoic experiments demonstrate that the proposed beamformer cancels interference by over 30 dB. Simulation with real acoustic data captured in a room with 0.3-s reverberation time shows that the noise is suppressed by 19 dB. In subjective evaluation, the proposed beamformer obtains 3.8 on a five-point mean opinion score scale, which is 1.0 point higher than the conventional robust beamformer