Iterative receivers for space-time block-coded OFDM systems in dispersive fading channels

  • Authors:
  • B. Lu;Xiaodong Wang;Ye Li

  • Affiliations:
  • Dept. of Electr. Eng., Texas A&M Univ., College Station, TX;-;-

  • Venue:
  • IEEE Transactions on Wireless Communications
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

We consider the design of iterative receivers for space-time block-coded orthogonal frequency-division multiplexing (STBC-OFDM) systems in unknown wireless dispersive fading channels, with or without outer channel coding. First, we propose a maximum-likelihood (ML) receiver for STBC-OFDM systems based on the expectation-maximization (EM) algorithm. By assuming that the fading processes remain constant over the duration of one STBC code word and by exploiting the orthogonality property of the STBC as well as the OFDM modulation, we show that the EM-based receiver has a very low computational complexity and that the initialization of the EM receiver is based on the linear minimum mean square error (MMSE) channel estimate for both the pilot and the data transmission. Since the actual fading processes may vary within one STBC code word, we also analyze the effect of a modeling mismatch on the receiver performance and show both analytically and through simulations that the performance degradation due to such a mismatch is negligible for practical Doppler frequencies. We further propose a turbo receiver based on the maximum a posteriori-EM algorithm for STBC-OFDM systems with outer channel coding. Compared with the previous noniterative receiver employing a decision-directed linear channel estimator, the iterative receivers proposed here significantly improve the receiver performance and can approach the ML performance in typical wireless channels with very fast fading, at a reasonable computational complexity well suited for real-time implementations