Neural network-based model reference adaptive control system

  • Authors:
  • H. D. Patino;D. Liu

  • Affiliations:
  • Inst. de Autom., Univ. Nacional de San Juan;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a σ-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given