Improved MCMAC with momentum, neighborhood, and averagedtrapezoidal output

  • Authors:
  • Kai Keng Ang;Chai Quek

  • Affiliations:
  • Delphi Automotive Syst., Singapore Private Ltd.;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2000

Quantified Score

Hi-index 0.01

Visualization

Abstract

An improved modified cerebellar articulation controller (MCMAC) neural control algorithm with better learning and recall processes using momentum, neighborhood learning, and averaged trapezoidal output, is proposed in this paper. The learning and recall processes of MCMAC are investigated using the characteristic surface of MCMAC and the control action exerted in controlling a continuously variable transmission (CVT). Extensive experimental results demonstrate a significant improvement with reduced training time and an extended range of trained MCMAC cells. The improvement in recall process using the averaged trapezoidal output (MCMAC-ATO) are contrasted against the original MCMAC using the square of the Pearson product moment correlation coefficient. Experimental results show that the new recall process has significantly reduced the fluctuations in the control action of the MCMAC and addressed partially the problem associated with the resolution of the MCMAC memory array