Context-Dependent DNA Coding With Redundancy and Introns

  • Authors:
  • Peng Xiao;P. Vadakkepat;Tong Heng Lee

  • Affiliations:
  • Huazhong Univ. of Sci. & Technol., Wuhan;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deoxyribonucleic acid (DNA) coding methods determine the meaning of a certain character in individual chromosomes by the characters surrounding it. The meaning of each character is context dependent, not position dependent. Although position-dependent coding is most commonly used in genetic algorithms (GAs), a context-dependent coding formation is in fact more closer to the natural DNA chromosome. With the context dependency, the DNA coding methods allow intron parts, redundancy, and variable string length in encoded strings while remaining compatible with the standard genetic operations. This paper tries to explicitly explore the influence of those special features of the DNA coding scheme. Two fundamental DNA coding methods (with and without the use of introns) are constructed and compared with the integer coding method, which lacks the features of interest. The performance of the proposed DNA coding methods is analyzed through the robot soccer role assignment problem. The context-dependent coding exhibits the advantages in handling the negative effect of epistasis. The redundancy and intron parts are helpful in preventing useful schemata from disruption and in increasing the population diversity. The variable length of the individual string enables GAs to evolve both the size and the structure of the fuzzy rule base.