Development of a systematic methodology of fuzzy logic modeling

  • Authors:
  • M. R. Emami;I. B. Turksen;A. A. Goldenberg

  • Affiliations:
  • Dept. of Mech. & Ind. Eng., Toronto Univ., Ont.;-;-

  • Venue:
  • IEEE Transactions on Fuzzy Systems
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a systematic methodology of fuzzy logic modeling for complex system modeling. It has a unified parameterized reasoning formulation, an improved fuzzy clustering algorithm, and an efficient strategy of selecting significant system inputs and their membership functions. The reasoning mechanism introduces 4 parameters whose variation provides a continuous range of inference operation. As a result, we are no longer restricted to standard extremes in any step of reasoning. The fuzzy model itself can then adjust the reasoning process by optimizing the inference parameters based on input-output data. The fuzzy rules are generated through fuzzy c-means (FCM) clustering. Major bottlenecks are addressed and analytical solutions are suggested. We also address the classification process to extend the derived fuzzy partition to the entire output space. In order to select suitable input variables among a finite number of candidates (unlike traditional approaches) we suggest a new strategy through which dominant input parameters are assigned in one step and no iteration process is required. Furthermore, a clustering technique called fuzzy fine clustering is introduced to assign the input membership functions. In order to evaluate the proposed methodology, two examples-a nonlinear function and a gas furnace dynamic procedure-are investigated in detail. The significant improvement of the model is concluded compared to other fuzzy modeling approaches