Parallel tempering MCMC acceleration using reconfigurable hardware

  • Authors:
  • Grigorios Mingas;Christos-Savvas Bouganis

  • Affiliations:
  • Department of Electrical & Electronic Engineering, Imperial College London, London, United Kingdom;Department of Electrical & Electronic Engineering, Imperial College London, London, United Kingdom

  • Venue:
  • ARC'12 Proceedings of the 8th international conference on Reconfigurable Computing: architectures, tools and applications
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Markov Chain Monte Carlo (MCMC) is a family of algorithms which is used to draw samples from arbitrary probability distributions in order to estimate - otherwise intractable - integrals. When the distribution is complex, simple MCMC becomes inefficient and advanced variations are employed. This paper proposes a novel FPGA architecture to accelerate Parallel Tempering, a computationally expensive, popular MCMC method, which is designed to sample from multimodal distributions. The proposed architecture can be used to sample from any distribution. Moreover, the work demonstrates that MCMC is robust to reductions in the arithmetic precision used to evaluate the sampling distribution and this robustness is exploited to improve the FPGA's performance. A 1072x speedup compared to software and a 3.84x speedup compared to a GPGPU implementation are achieved when performing Bayesian inference for a mixture model without any compromise on the quality of results, opening the way for the handling of previously intractable problems.