Understanding and detecting real-world performance bugs

  • Authors:
  • Guoliang Jin;Linhai Song;Xiaoming Shi;Joel Scherpelz;Shan Lu

  • Affiliations:
  • University of Wisconsin-Madison, Madison, WI, USA;University of Wisconsin-Madison, Madison, WI, USA;University of Wisconsin-Madison, Madison, WI, USA;University of Wisconsin-Madison, Madison, WI, USA;University of Wisconsin-Madison, Madison, WI, USA

  • Venue:
  • Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design and Implementation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Developers frequently use inefficient code sequences that could be fixed by simple patches. These inefficient code sequences can cause significant performance degradation and resource waste, referred to as performance bugs. Meager increases in single threaded performance in the multi-core era and increasing emphasis on energy efficiency call for more effort in tackling performance bugs. This paper conducts a comprehensive study of 110 real-world performance bugs that are randomly sampled from five representative software suites (Apache, Chrome, GCC, Mozilla, and MySQL). The findings of this study provide guidance for future work to avoid, expose, detect, and fix performance bugs. Guided by our characteristics study, efficiency rules are extracted from 25 patches and are used to detect performance bugs. 332 previously unknown performance problems are found in the latest versions of MySQL, Apache, and Mozilla applications, including 219 performance problems found by applying rules across applications.