Low-Complexity Approaches to Slepian–Wolf Near-Lossless Distributed Data Compression

  • Authors:
  • T. P. Coleman;A. H. Lee;M. Medard;M. Effros

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Illinois Univ., Champaign, IL;-;-;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.90

Visualization

Abstract

This paper discusses the Slepian-Wolf problem of distributed near-lossless compression of correlated sources. We introduce practical new tools for communicating at all rates in the achievable region. The technique employs a simple "source-splitting" strategy that does not require common sources of randomness at the encoders and decoders. This approach allows for pipelined encoding and decoding so that the system operates with the complexity of a single user encoder and decoder. Moreover, when this splitting approach is used in conjunction with iterative decoding methods, it produces a significant simplification of the decoding process. We demonstrate this approach for synthetically generated data. Finally, we consider the Slepian-Wolf problem when linear codes are used as syndrome-formers and consider a linear programming relaxation to maximum-likelihood (ML) sequence decoding. We note that the fractional vertices of the relaxed polytope compete with the optimal solution in a manner analogous to that observed when the "min-sum" iterative decoding algorithm is applied. This relaxation exhibits the ML-certificate property: if an integral solution is found, it is the ML solution. For symmetric binary joint distributions, we show that selecting easily constructable "expander"-style low-density parity check codes (LDPCs) as syndrome-formers admits a positive error exponent and therefore provably good performance