Cores of cooperative games in information theory

  • Authors:
  • Mokshay Madiman

  • Affiliations:
  • Department of Statistics, Yale University, New Haven, CT

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking - Theory and Applications in Multiuser/Multiterminal Communications
  • Year:
  • 2008

Quantified Score

Hi-index 0.06

Visualization

Abstract

Cores of cooperative games are ubiquitous in information theory and arise most frequently in the characterization of fundamental limits in various scenarios involving multiple users. Examples include classical settings in network information theory such as Slepian-Wolf source coding and multiple access channels, classical settings in statistics such as robust hypothesis testing, and new settings at the intersection of networking and statistics such as distributed estimation problems for sensor networks. Cooperative game theory allows one to understand aspects of all these problems from a fresh and unifying perspective that treats users as players in a game, sometimes leading to new insights. At the heart of these analyses are fundamental dualities that have been long studied in the context of cooperative games; for information theoretic purposes, these are dualities between information inequalities on the one hand and properties of rate, capacity, or other resource allocation regions on the other.