Data gathering mechanism with local sink in geographic routing for wireless sensor networks

  • Authors:
  • Euisin Lee;Soochang Park;Fucai Yu;Sang-Ha Kim

  • Affiliations:
  • Dept. of Comput. Eng., Chungnam Nat. Univ., Daejeon, South Korea;-;-;-

  • Venue:
  • IEEE Transactions on Consumer Electronics
  • Year:
  • 2010

Quantified Score

Hi-index 0.43

Visualization

Abstract

Most existing geographic routing protocols on sensor networks concentrates on finding ways to guarantee data forwarding from the source to the destination, and not many protocols have been done on gathering and aggregating data of sources in a local and adjacent region. However, data generated from the sources in the region are often redundant and highly correlated. Accordingly, gathering and aggregating data from the region in the sensor networks is important and necessary to save the energy and wireless resources of sensor nodes. We introduce the concept of a local sink to address this issue in geographic routing. The local sink is a sensor node in the region, in which the sensor node is temporarily selected by a global sink for gathering and aggregating data from sources in the region and delivering the aggregated data to the global sink. We next design a Single Local Sink Model for determining optimal location of single local sink. Because the buffer size of a local sink is limited and the deadline of data is constrained, single local sink is capable of carrying out many sources in a large-scale local and adjacent region. Hence, we also extend the Single Local Sink Model to a Multiple Local Sinks Model. We next propose a data gathering mechanism that gathers data in the region through the local sink and delivers the aggregated data to the global sink. Simulation results show that the proposed mechanism is more efficient in terms of the energy consumption, the data delivery ratio, and the deadline miss ratio than the existing mechanisms.