Reinforcement learning to adjust robot movements to new situations

  • Authors:
  • Jens Kober;Erhan Oztop;Jan Peters

  • Affiliations:
  • MPI Tübingen, Germany;ATR, CMC, Japan;MPI Tübingen, Germany

  • Venue:
  • IJCAI'11 Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Three
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many complex robot motor skills can be represented using elementary movements, and there exist efficient techniques for learning parametrized motor plans using demonstrations and self-improvement. However with current techniques, in many cases, the robot currently needs to learn a new elementary movement even if a parametrized motor plan exists that covers a related situation. A method is needed that modulates the elementary movement through the meta-parameters of its representation. In this paper, we describe how to learn such mappings from circumstances to meta-parameters using reinforcement learning. In particular we use a kernelized version of the reward-weighted regression. We show two robot applications of the presented setup in robotic domains; the generalization of throwing movements in darts, and of hitting movements in table tennis. We demonstrate that both tasks can be learned successfully using simulated and real robots.