Efficient provisioning of bursty scientific workloads on the cloud using adaptive elasticity control

  • Authors:
  • Ahmed Ali-Eldin;Maria Kihl;Johan Tordsson;Erik Elmroth

  • Affiliations:
  • Umeå University, Umeå, Sweden;Lund University, Lund, Sweden;Umeå University, Umeå, Sweden;Umeå University, Umeå, Sweden

  • Venue:
  • Proceedings of the 3rd workshop on Scientific Cloud Computing Date
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Elasticity is the ability of a cloud infrastructure to dynamically change the amount of resources allocated to a running service as load changes. We build an autonomous elasticity controller that changes the number of virtual machines allocated to a service based on both monitored load changes and predictions of future load. The cloud infrastructure is modeled as a G/G/N queue. This model is used to construct a hybrid reactive-adaptive controller that quickly reacts to sudden load changes, prevents premature release of resources, takes into account the heterogeneity of the workload, and avoids oscillations. Using simulations with Web and cluster workload traces, we show that our proposed controller lowers the number of delayed requests by a factor of 70 for the Web traces and 3 for the cluster traces when compared to a reactive controller. Our controller also decreases the average number of queued requests by a factor of 3 for both traces, and reduces oscillations by a factor of 7 for the Web traces and 3 for the cluster traces. This comes at the expense of between 20% and 30% over-provisioning, as compared to a few percent for the reactive controller.