Evaluation of delta compression techniques for efficient live migration of large virtual machines

  • Authors:
  • Petter Svärd;Benoit Hudzia;Johan Tordsson;Erik Elmroth

  • Affiliations:
  • Umeå University, Umeå, Sweden;SAP (UK) Limited, Belfast, United Kingdom;Umeå University, Umeå, Sweden;Umeå University, Umeå, Sweden

  • Venue:
  • Proceedings of the 7th ACM SIGPLAN/SIGOPS international conference on Virtual execution environments
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Despite the widespread support for live migration of Virtual Machines (VMs) in current hypervisors, these have significant shortcomings when it comes to migration of certain types of VMs. More specifically, with existing algorithms, there is a high risk of service interruption when migrating VMs with high workloads and/or over low-bandwidth networks. In these cases, VM memory pages are dirtied faster than they can be transferred over the network, which leads to extended migration downtime. In this contribution, we study the application of delta compression during the transfer of memory pages in order to increase migration throughput and thus reduce downtime. The delta compression live migration algorithm is implemented as a modification to the KVM hypervisor. Its performance is evaluated by migrating VMs running different type of workloads and the evaluation demonstrates a significant decrease in migration downtime in all test cases. In a benchmark scenario the downtime is reduced by a factor of 100. In another scenario a streaming video server is live migrated with no perceivable downtime to the clients while the picture is frozen for eight seconds using standard approaches. Finally, in an enterprise application scenario, the delta compression algorithm successfully live migrates a very large system that fails after migration using the standard algorithm. Finally, we discuss some general effects of delta compression on live migration and analyze when it is beneficial to use this technique.