Exploring cross-layer power management for PGAS applications on the SCC platform

  • Authors:
  • Marc Gamell;Ivan Rodero;Manish Parashar;Rajeev Muralidhar

  • Affiliations:
  • Rutgers University, Piscataway, New Jersey, USA;Rutgers University, Piscataway, New Jersey, USA;Rutgers University, Piscataway, New Jersey, USA;Intel India, Ltd, Bangalore, India

  • Venue:
  • Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

High-performance parallel computing architectures are increasingly based on multi-core processors. While current commercially available processors are at 8 and 16 cores, technological and power constraints are limiting the performance growth of the cores and are resulting in architectures with much higher core counts, such as the experimental many-core Intel Single-chip Cloud Computer (SCC) platform. These trends are presenting new sets of challenges to HPC applications including programming complexity and the need for extreme energy efficiency. In this paper, we first investigate the power behavior of scientific Partitioned Global Address Space (PGAS) application kernels on the SCC platform, and explore opportunities and challenges for power management within the PGAS framework. Results obtained via empirical evaluation of Unified Parallel C (UPC) applications on the SCC platform under different constraints, show that, for specific operations, the potential for energy savings in PGAS is large; and power/performance trade-offs can be effectively managed using a cross-layer approach. We investigate cross-layer power management using PGAS language extensions and runtime mechanisms that manipulate power/performance tradeoffs. Specifically, we present the design, implementation and evaluation of such a middleware for application-aware cross-layer power management of UPC applications on the SCC platform. Finally, based on our observations, we provide a set of insights that can be used to support similar power management for PGAS applications on other many-core platforms.